Sabtu, 19 Maret 2011

teknologi

Menggerakkan Benda Dengan Cahaya Dalam Skala Meter

Dulu, menggerakkan obyek-obyek dengan cahaya hanya mampu dilakukan dalam skala yang sangat kecil. Sekarang para ilmuwan menggerakkannya dalam skala meter.

Memindahkan Benda Dengan Cahaya

Lebih dari 40 tahun para ilmuwan menggunakan tekanan radiasi cahaya untuk memanipulasi obyek-obyek kecil di luar angkasa, akan tetapi hingga saat ini pergerakan obyek-obyek tersebut hanya terbatas pada skala yang sangat kecil, biasanya hanya beberapa ratus mikrometer dan kebanyakan dilakukan pada cairan-cairan. Pada penelitian baru, para ilmuwan mendemonstrasikan suatu teknik yang menghasilkan manipulasi optik sangat besar di udara dengan menggunakan penangkap optik yang bisa menggerakkan obyek berukuran 100 mikrometer melintasi jarak dalam skala meter dengan akurasi sekitar 10 mikrometer.

Para peneliti yakni Vladlen Shvedov dari Universitas Nasional Australia di Canberra dan Universitas Nasional Tavrida di Simferopol, Ukraina dan rekan-rekan penelitinya mempublikasikan penelitian mereka di edisi terakhir Physical Review Letters baru-baru ini.

Sebagaimana yang dijelaskan oleh para ilmuwan, menggerakkan obyek dengan cahaya bisa dilakukan dengan menggunakan efek fotoresis di udara serta gas-gas lainnya. Ketika suatu partikel dipanaskan secara tidak merata oleh cahaya, molekul-molekul gas sekitar melambung dari permukaan partikel dengan kecepatan berbeda yang menghasilkan tenaga pada partikel itu yang menekannya ke arah dari iluminasi atau cahaya yang lebih tinggi ke iluminasi yang lebih rendah.

Dalam studi baru tersebut, para ilmuwan memodifikasi sistem penangkap cahaya yang biasa digunakan dengan menggabungkan pusaran sinar optik dengan sebuah bagian yang serupa kue donat untuk membuat saluran pipa optik tempat lingkaran terang intensitas cahaya berfungsi sebagai penahan "dinding pipa" yang menangkap partikel-partikel penyerap cahaya di pusat gelap sinar tersebut. Komponen aksial tenaga termal pusaran sinar menekan partikel-partikel di sepanjang saluran pipa, dan sebuah cermin yang bisa digerakkan dapat mengontrol arah sinar untuk membidik partikel-partikel pada target-target yang berada pada jarak sampai satu meter.

Para peneliti mendemonstrasikan manipulasi optik jarak jauh dengan menggunakan dua jenis partikel yaitu kelompok partikel-partikel nano karbon berdiameter 100 nanometer hingga 100 mikrometer dan mikrosfer gelas berlubang berlapis karbon yang berdiameter 50 hingga 100 mikrometer. Dalam kedua kasus, permukaan karbon menjadikan obyek-obyek tersebut penyerap cahaya yang baik yang memiliki reflektivitas yang sangat rendah. Eksperimen-eksperimen tersebut menunjukkan bahwa kecepatan fotoresis partikel-partikel (yang ada dalam urutan beberapa milimeter per detik) tersebut bervariasi tergantung pada struktur internal partikel-partikel itu dan variasi-variasi yang berhubungan dengan massa.

"Tiga hal ilmiah baru yang cukup berbeda digabungkan dalam satu eksperimen," kata rekan peneliti Andrei Rode dari Universitas Nasional Australia, seperti yang dilansir oleh PhysOrg. "Hal-hal tersebut ialah penggunaan tenaga termal fotoresis untuk menggerakan partikel-partikel di udara yang berlawanan dengan tenaga tekanan cahaya atau tenaga radiasi dalam pinset optik dalam cairan, penggunaan pusaran sinar optik dengan bentuk serupa kue donat pada bagian persilangan untuk membentuk saluran pipa pusaran optik, dan penggunaan partikel-partikel penyerap cahaya dengan konduktivitas termal rendah seperti kelompok partikel nano karbon dan kas-kas gelas mikro berlapis karbon."

Seperti yang didemonstrasikan oleh para peneliti, teknik tersebut bisa memungkinkan partikel-partikel penyerap cahaya untuk dimanipulasi dengan tingakt akurasi tinggi bahkan pada jarak jauh. Para peneliti bisa menggerakkan partikel-partikel ke suatu target yang berada pada jarak 0,5 meter dengan akurasi 10 mikrometer yang mereka demonstrasikan dengan menggunakan partikel-partikel berdiameter antara 60 hingga 100 mikrometer.

"Semakin jauh jaraknya, semakin besar tenaga laser yang dibutuhkan sehingga semakin tinggi bahaya kelebihan panas atau bahkan partikel-partikel terbakar," kata Rode. "Jadi jaraknya sangat tergantung pada sifat-sifat partikel. Dengan partikel-partikel yang kami gunakan, seharusnya tak ada tantangan besar untuk memindahkannya hingga jarak 10 meter."

Memanipulasi partikel-partikel dengan optik melintasi jarak seperti itu bisa untuk beberapa aplikasi seperti transportasi bebas sentuh wadah-wadah yang berisi zat-zat yang sangat murni atau berbahaya termasuk virus-virus, sel-sel hidup dan gas-gas. Sebagaimana didemonstrasikan oleh para ilmuwan, teknik tersebut memungkinkan para peneliti untuk menggerakkan wadah-wadah pada arah yang berlawanan, mempercepatnya hingga beberapa sentimeter per detik, atau menahannya pada tempat yang tak bergerak di lokasi mana saja dalam saluran pipa. Oleh karena teknik tersebut bisa diaplikasikan ke berbagai bahan, teknik itu bisa juga digunakan untuk mempelajari partikel-partikel di udara seperti aerosol-aerosol dan juga untuk memetakan plasma-plasma debu dan debu antar-bintang di antara aplikasi-aplikasi lainnya.

teknologi

1 Votes
Quantcast

Baterai bertenaga udara, 10 kali kapasitas model konvensional berhasil ditemukan. Baterai STAIR (Saint Andrews Air) menandai generasi baru mobil elektrik, laptop dan HP.

Sel baterai mendapat tenaga dengan cara tradisional, tetapi ketika suplai kekuatan akan habis, maka sebuah bagian inti baterai terbuka dan mengambil oksigen dari udara di sekelilingnya.

Kemudian oksigen bereaksi dengan komponen karbon berpori di dalam baterai, yang menghasilkan energi lebih banyak, dan mengisi ulang sel baterai sehingga bertenaga kembali setelah habis.

Dengan menggantikan bagian kimia lithium kobalt oksida tradisional dengan karbon berpori dan oksigen yang diperoleh dari udara, maka baterai menjadi lebih ringan.

Sebagaimana dilansir telegraph.co.uk siklus udara membantu mengisi ulang baterai setelah digunakan. Akibatnya benda tersebut memiliki kapasitas penyimpanan lebih besar daripada sel baterai serupa lainnya. Diperkirakan bisa mengeluarkan tenaga 10 kali lebih lama.

Profesor Peter Bruce dari departemen kimia Universitas Saint Andrews mengatakan, “Keuntungannya adalah lebih kecil dan ringan sehingga akan lebih baik untuk diaplikasikan dalam perangkat yang lebih kecil dan mobile.”

“Ukurannya juga krusial bagi siapapun yang mencoba mengembangkan mobil elektrik seiring keinginan menurunkan bobot mobil. Penyimpanan juga sangat penting dalam pengembangan tenaga ‘hijau’ karena angin dan panas matahari adalah barang gratis,” imbuhnya.

Sumber : inilah.com

Gudang ILmu

Kekuatan petir yang tersembunyi

Petir sering terlihat di saat cuaca mendung atau ketika sedang hujan badai. Coba sekali-sekali kamu perhatikan di malam hari, saat hujan deras, langit tiba-tiba menyala, tak lama kemudian disusul oleh suara menggelegar. Suara itu membuat kita sering menutup telinga kita, bahkan membuat kita bersembunyi ditempat yang menurut kita cukup terlindungi. Mengapa? Karena petir bisa menyambar benda-benda di sekitarnya dan ditempat yang tinggi. Misalnya pohon kelapa atau tiang listrik.

Dalam beberapa kejadian di Indonesia, petir bisa menyebabkan kematian, seperti pernah terjadi di Batam. Ketika seseorang sedang bermain golf di lapangan terbuka, ia tiba-tiba tersambar petir. Sangat dahsyat ya... Nah, sekarang, teman-teman ingin tahu mengapa suara petir menggelegar sampai menerangi langit? Atau teman-teman ingin tahu seberapa banyak sih cahaya yang dipancarkan petir? Atau seberapa besar panas yang dilepaskannya? Kalau mau tahu, ayo baca kelanjutan artikel ini….

Dalam ilmu fisika, satu kilatan petir adalah cahaya terang yang terbentuk selama pelepasan listrik di atmosfer saat hujan badai. Petir dapat terjadi ketika tegangan listrik pada dua titik terpisah di atmosfer – masih dalam satu awan, atau antara awan dan permukaan tanah, atau antara dua permukaan tanah – mencapai tingkat tinggi. Kilat petir terjadi dalam bentuk setidaknya dua sambaran. Pada sambaran pertama muatan negatif (-) mengalir dari awan ke permukaan tanah. Ini bukanlah kilatan yang sangat terang. Sejumlah kilat percabangan biasanya dapat terlihat menyebar keluar dari jalur kilat utama. Ketika sambaran pertama ini mencapai permukaan tanah, sebuah muatan berlawanan terbentuk pada titik yang akan disambarnya dan arus kilat kedua yang bermuatan positif terbentuk dari dalam jalur kilat utama tersebut langsung menuju awan. Dua kilat tersebut biasanya beradu sekitar 50 meter di atas permukaan tanah. Arus pendek terbentuk di titik pertemuan antara awan dan permukaan tanah tersebut, dan hasilnya sebuah arus listrik yang sangat kuat dan terang mengalir dari dalam jalur kilat utama itu menuju awan. Perbedaan tegangan pada aliran listrik antara awan dan permukaan tanah ini melebihi beberapa juta volt.

Energi petir

Energi yang dilepaskan oleh satu sambaran petir lebih besar daripada yang dihasilkan oleh seluruh pusat pembangkit tenaga listrik di Amerika. Suhu pada jalur di mana petir terbentuk dapat mencapai 10.000 derajat Celcius. Suhu di dalam tanur untuk meleburkan besi adalah antara 1.050 dan 1.100 derajat Celcius. Panas yang dihasilkan oleh sambaran petir terkecil dapat mencapai 10 kali lipatnya. Panas yang luar biasa ini berarti bahwa petir dapat dengan mudah membakar dan menghancurkan seluruh unsur yang ada di muka bumi. Perbandingan lainnya, suhu permukaan matahari tingginya 700.000 derajat Celcius. Dengan kata lain, suhu petir adalah 1/70 dari suhu permukaan matahari. Cahaya yang dikeluarkan oleh petir lebih terang daripada cahaya 10 juta bola lampu pijar berdaya 100 watt.

Sebuah sambaran petir berukuran rata-rata memiliki energi yang dapat menyalakan sebuah bola lampu 100 watt selama lebih dari 3 bulan. Sebuah sambaran kilat berukuran rata-rata mengandung kekuatan listrik sebesar 20.000 amp. Sebuah las menggunakan 250-400 amp untuk mengelas baja. Kilat bergerak dengan kecepatan 150.000 km/detik, atau setengah kecepatan cahaya, dan 100.000 kali lipat lebih cepat daripada suara Kilatan yang terbentuk turun sangat cepat ke bumi dengan kecepatan 96.000 km/jam.

Sambaran pertama mencapai titik pertemuan atau permukaan bumi dalam waktu 20 milidetik, dan sambaran dengan arah berlawanan menuju ke awan dalam tempo 70 mikrodetik. Secara keseluruhan petir berlangsung dalam waktu hingga setengah detik. Suara gemuruh yang mengikutinya disebabkan oleh pemanasan mendadak dari udara di sekitar jalur petir. Akibatnya, udara tersebut memuai dengan kecepatan melebihi kecepatan suara, meskipun gelombang kejutnya kembali ke gelombang suara normal dalam rentang beberapa meter. Gelombang suara terbentuk mengikuti udara atmosfer dan bentuk permukaan setelahnya. Itulah alasan terjadinya guntur dan petir yang susul-menyusul.

Petir berarus listrik terbesar

Sebuah majalah ‘Intisari’ pernah mengungkapkan bahwa petir berarus listrik terbesar terdapat di Indonesia, tepatnya di daerah Depok. Penelitian yang disponsori PLN Cabang Depok, pada bulan April, Mei dan Juni 2002, dengan menggunakan teknologi lighting position and tracking system (LPATS), itu untuk mengenali perilaku petir di wilayah kota di selatan Jakarta. Tak disangka, para peneliti mendapati arus petir negatif berkekuatan 379,2 kA (kilo Ampere) dan petir positif mencapai 441,1 kA.

Dengan kekuatan arus sebesar itu, petir mampu meratakan bangunan gedung yang terbuat dari beton sekalipun. Selama ini, Indonesia memang dikenal sebagai negara dengan sambaran petir cukup tinggi. Kondisi meteorologis Indonesia memang sangat ideal bagi terciptanya petir. Tiga syarat pembentukan petir – udara naik, kelembaban, dan partikel bebas atau aerosol – terpenuhi dengan baik di Indonesia sebagai negara maritim.

Dalam majalah Intisari edisi Desember 2000, disebutkan bahwa bumi bisa diibaratkan sebagai kapasitor. Antara lapisan ionesfer dan Bumi, jika langit cerah, ada arus listrik yang mengalir terus-menerus, dari ionosfer yang bermuatan positif ke Bumi yang bermuatan negatif. Tapi Bumi tidak terbakar, karena ada awan petir yang bermuatan listrik positif maupun negatif sebagai penyeimbang. “Yang positif turun ke Bumi, dan yang negatif naik ke ionosfer.

Ketika langit berawan, tidak semua awan adalah awan petir. Hanya awan cumulonimbus yang menghasilkan petir. Petir terjadi karena pelepasan muatan listrik dari satu awan cumulonimbus ke awan lainnya, atau dari awan langsung ke Bumi.

Saat kita merenungi semua perihal petir ini, kita akan memahami bahwa peristiwa alam ini adalah sesuatu yang menakjubkan. Bagaimana sebuah kekuatan luar biasa semacam itu muncul dari partikel bermuatan positif dan negatif, yang tak terlihat oleh mata telanjang, menunjukkan bahwa petir diciptakan dengan sengaja oleh Sang Pencipta. Lebih jauh lagi, kenyataan bahwa molekul-molekul nitrogen, yang sangat penting untuk tumbuhan, muncul dari kekuatan ini, sekali lagi membuktikan bahwa petir diciptakan khusus oleh sang pencipta.

Artikel ini bersumber pada www.harunyahya.com

Pengikut